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ON ONE FAMILY OF MINIMAL TORI IN R
3

WITH PLANAR EMBEDDED ENDS

E. I. Shamaev UDC 514.752.437

Abstract: We construct new examples of complete minimal tori in the three-dimensional Euclidean
space with an arbitrary even number n ≥ 6 of planar embedded ends.
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§ 1. Introduction

In this article we construct complete minimal immersions of tori in R
3 punctured at arbitrary even

number n ≥ 6 of points. Asymptotically, in a neighborhood of punctured points a torus looks like
a plane. A surface with such behavior in a neighborhood of punctured points is called a surface with
planar embedded ends.

The main result of this paper is the following

Theorem 1. For every even n ≥ 6, there is a complete minimal immersion of a torus in R
3 with n

planar embedded ends.

A priori constructed tori can have branch points at which the induced metric degenerates. By now, it
is proven that for a small number of ends (n = 6, 8, 10) there are tori without branch points [1]; however,
this is most likely to be true for an arbitrary even n.

The study of complete minimal surfaces with planar embedded ends was initiated by Bryant. In [2]
he demonstrated that an inversion takes complete minimal surfaces with planar embedded ends into
Willmore surfaces, i.e., into extremals of the Willmore functional

W (Σ) =
∫
Σ

(
H2 −K

)
dσ,

where H and K are the mean and Gaussian curvatures and dσ is the area element of a surface Σ. In this
event, the planar ends go into a multiple point of the surface and the value of the Willmore functional is
equal to 4πn, where n is the multiplicity of the point (or the number of planar ends). Bryant demonstrated
that all Willmore spheres are obtained in this way.

A minimal sphere with one planar end (n = 1) is the standard plane. In [3] Bryant proved that
there are no minimal spheres with planar ends for n = 2, 3, 5, 7. In [4] Peng constructed some examples
of minimal spheres with n planar ends for even n ≥ 4 and odd n ≥ 9.

In the case of tori, the images of minimal surfaces with planar ends determine the class of supermin-
imal Willmore tori, while the other Willmore tori are described by means of solutions to 4-particle Toda
lattices (for example, see [5]).

For obvious reasons, there are no minimal tori for n = 1, 2. Kusner and Schmitt [6] demonstrated that
there are no complete minimal tori with three planar ends. A complete minimal torus with four planar
ends in R

3 was constructed by Costa [7] and by Kusner and Schmitt [6]. We constructed an example of
a torus with six planar ends [1].
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We now describe our construction briefly. Consider the Riemann surface Γ of genus 1 given in C
2 by

the equation
w2 = P (z) = 4(z − p1)(z − p2)(z − p3), p1, p2, p3 ∈ R. (1)

Let γ1 and γ2 be generators of π1(Γ).
We use the Weierstrass representation [8] to define the minimal immersions Φ : Γ → R

3

Φ(T ) = Re

T∫
T0

(
ψ2

1 − ψ2
2, i
(
ψ2

1 + ψ2
2

)
, 2ψ1ψ2

)dz
w
, (2)

where T0 ∈ Γ is a fixed point and ψ2
1, ψ

2
2, and ψ1ψ2 are meromorphic functions on Γ. Consequently, the

following equalities are valid on the universal covering υ : Υ → Γ for γ : [0, 1] → Υ such that υ(γ) is
homotopically equivalent to γ1 or γ2:

ψ1(γ(0)) = ε(γ)ψ1(γ(1)), ψ2(γ(0)) = ε(γ)ψ2(γ(1)), ε(γ) = ±1.

Then ψ1 and ψ2 are sections of the spin structure on Γ. In our construction ε(γ1) and ε(γ2) are equal
to 1; i.e., ψ1 and ψ2 are meromorphic functions and (2) cannot be an embedding [6].

A mapping Φ is a minimal immersion with planar ends if and only if each pole of the differentials

ψ2
1

dz

w
, ψ2

2

dz

w
, ψ1ψ2

dz

w

is of second order with zero residues [6].
Moreover, for Φ to be correctly defined, we have to solve the period problem:

Re
∫
γi

(
ψ2

1 − ψ2
2

)dz
w

= 0, Im
∫
γi

(
ψ2

1 + ψ2
2

)dz
w

= 0, Re
∫
γi

2ψ1ψ2
dz

w
= 0, (3)

where i = 1, 2.
In our construction the functions ψ1 and ψ2 are as follows:

ψ1 =
m∑
i=1

αiw

z − pi
, ψ2 =

m∑
j=1

βjw

z − pj
, (4)

where m ≥ 4 is an integer, α1, . . . , αm, β1, . . . , βm ∈ C, and p1, . . . , pm ∈ R are distinct. It is easy to
verify that ψ1

dz
w and ψ2

dz
w have poles of the first order at the branch points

P0 = (∞,∞), P1 = (p1, 0), P2 = (p2, 0), P3 = (p3, 0)

and at the points

P−
j = (pj ,−

√
P (pj)), P+

j = (pj ,
√
P (pj)), j = 4, . . . ,m.

Define the space V (p) = V (p1, . . . , pm) of functions of the form (4)

V (p) =
{ m∑
i=1

νiw

z − pi
| (ν1, . . . , νm) ∈ kerM ⊂ C

m

}
,

where the matrix

M =

⎛
⎜⎜⎜⎜⎝

1
p4−p1

1
p4−p2

1
p4−p3

P ′(p4)
4P (p4)

1
p4−p5 . . . 1

p4−pm

1
p5−p1

1
p5−p2

1
p5−p3

1
p5−p4

P ′(p5)
4P (p5) . . . 1

p5−pm

...
...

...
...

...
. . .

...
1

pm−p1
1

pm−p2
1

pm−p3
1

pm−p4
1

pm−p5 . . . P ′(pm)
4P (pm)

⎞
⎟⎟⎟⎟⎠

acts on a column vector by left multiplication.
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Proposition 1. 1. For every ψ1, ψ2 ∈ V (p) we have

res
Q

ψ1ψ2dz

w
= 0,

where Q = P0, . . . , P3, P
±
4 , . . . , P

±
m .

2. The following equality is valid for almost all p1, . . . , pm ∈ R such that p1 + p2 + p3 = 0:

dimC V (p) = 3.

Thus, the Weierstrass representation (2) for ψ1, ψ2 ∈ V (p) determines a minimal surface with planar
ends.

We now have to choose ψ1 and ψ2 in V (p) to solve the six real equations (3). Here we have six free
complex parameters (since ψ1, ψ2 ∈ V (p) and dimC V (p) = 3 by Proposition 1).

The following proposition plays the key role in solving the period problem (3):

Proposition 2. There are symmetric bilinear forms

A : V (p) × V (p) → C, B(p) : V (p) × V (p) → C

such that

−ηkA
(
ψ1, ψ2

)
+ ωkB(p;ψ1, ψ2) =

1
8

∫
γk

ψ1ψ2
dz

w
, k = 1, 2, (5)

where

ηk = −1
2

∫
γk

zdz

w
, ωk =

1
2

∫
γk

dz

w
, k = 1, 2.

The form A is independent of p1, . . . , pm and positive definite on V (p).

By the positive definiteness of A we mean the following:

A(ψ,ψ) > 0 for ψ =
m∑
i=1

νiw

z − pi
∈ V (p),

(
ν1, . . . , νm

) ∈ R
n\{0}.

The positive definiteness of A implies that we can choose a basis ξ1, ξ2, ξ3 for the space V (p) such
that A is given by the identity matrix and B(p) is diagonal. Thus, we have

Lemma 1. There is a basis ξ1, ξ2, ξ3 for the space V (p) such that

∫
γ

ξiξj
dz

w
= 0, i, j = 1, . . . , 3,

for i �= j and γ = γ1, γ2.

Existence of such a basis enables us to solve explicitly the period problem (3).
Let

(p1, . . . , pm) =
{

(−1, 0, 1, 2, 2 + t, 3, . . . , m−1
2 + t) for odd m,

(−1, 0, 1, 2, 2 + t, 3, . . . , m2 , 1 + t) for even m

for a sufficiently small t ∈ R.

1137



Proposition 3. Put ψ1 = v(r, s)ξ1 + ξ2, ψ2 = x(r, s)ξ1 + y(r, s)ξ2 + u(r, s)ξ3, where

v(r, s) = ±
√
− 1

2c
(|c|2 + 2i Im d±

√
(|c|2 + 2i Im d)2 − 4|c|2d); (6)

x(r, s) =
−a2r − b2s

v(r, s)
; y(r, s) = a1r + b1s;

u(r, s) =
√

1
a3

(a1v(r, s)
2 − a1x2(r, s) − a2y2(r, s) + a2); (7)

ak =
∫
γ1

ξ2k
dz

w
, bk =

∫
γ2

ξ2k
dz

w
, k = 1, 2, 3; (8)

c(r, s) =
a2b3 + a3b2 − (a2b3 − a3b2)(a1r + b1s)2

(a1b3 + a3b1)
;

d(r, s) = −(a1b3 − a3b1)
(a1b3 + a3b1)

(a2r + b2s)2.

Then there is an open domain Ω ⊂ R
2 such that (3) holds for almost all (r, s) ∈ Ω.

Theorem 1 follows from Propositions 1–3 and 5.
Thus, we obtain a two-parameter family of tori with planar ends for fixed p1, . . . , pm.
Immersion (2) has no branch points if (|ψ1|2 + |ψ2|2)(T ) �= 0 for all T ∈ Γ. This condition depends

on m + 2 free parameters r, s, p1, . . . , pm which makes the inequality obvious for parameters in general
position; however, a rigorous proof of this assertion is technically complicated. As mentioned above, we
can show this only for small n = 2m− 2.

The author is grateful to Professor I. A. Tăımanov for stating the problem and useful discussions as
well as A. E. Mironov for useful discussions and advice.

§ 2. Proof of Theorem 1

Prove some auxiliary lemmas.

Lemma 2. For every function ψ ∈ V (p) we have

res
Q

ψ2dz

w
= 0, Q = P0, . . . , P3, P

±
4 , . . . , P

±
m .

The dimension of the space V (p) over C is greater than or equal to 3.

Proof. Consider an arbitrary function in V (p):

ψ =
m∑
i=1

νiw

z − pi
.

The holomorphic involution σ : (z, w) 	→ (z,−w) exists on the torus Γ. The vanishing of the
residues ψ2dz/w at the branch points of Γ follows from the obvious equality

σ∗(ψ2dz/w) = −ψ2dz/w

and the invariance of the points P0, . . . , P3 under the involution σ.
Choose a local parameter q = z − pk in a neighborhood of the point P+

k , k = 4, . . . ,m. Denote√
P (pk) by wk and dw

dq (pk, wk) by w′
k for k = 4, . . . ,m. The Laurent series expansion of the differential

ψ2

w dq in a neighborhood of P+
k has the form

ψ2

w
dq =

ν2
kwk
q2

dq +
(
q2ψ2

w

)′ (
P+
k

)1
q
dq +O(1) dq.
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Consequently, the residue at P+
k is equal to

res
P+

k

ψ2

w
dq = lim

q→0

1
w2

((q2ψ2)′w − q2ψ2w′). (9)

It is obvious that
lim
q→0

q2ψ2w′ = ν2
kw

2
kw

′
k. (10)

Using the equality (q2ψ2)′w = 2(qψ)′qψw, we calculate (qψ)′:

(qψ)′
(
P+
k

)
=
(
w

νk
z − pk

(z − pk) + w

m∑
i=1,i�=k

νi
z − pi

(z − pk)
)(
P+
k

)

= νkw
′
k + wk

m∑
i=1,i�=k

νi
pk − pi

. (11)

Inserting (10) and (11) in (9), we obtain

res
P+

k

ψ2

w
dq =

1
w2
k

(
2
(
νkw

′
k + wk

m∑
i=1,i�=k

νi
pk − pi

)
νkw

2
k − ν2

kw
2
kw

′
k

)

= 2νkwk

(
P ′(pk)
4P (pk)

νk +
m∑

i=1,i�=k

1
pk − pi

νi

)
. (12)

The last equality is valid, since on the torus w2 = P (z) we have

w′
k

2wk
=
P ′(pk)
4P (pk)

, k = 4, . . . ,m.

Since the condition (ν1, . . . , νm) ∈ kerM implies the equalities

P ′(pk)
4P (pk)

νk +
m∑

i=1,i�=k

1
pk − pi

νi = 0, k = 4, . . . ,m,

it follows from (12) that resP±
k

ψ2dz
w = 0 for ψ ∈ V (p), k = 4, . . . ,m.

Thus, the 1-form under study have zero residues at each of the points P0, . . . , P3, P
±
4 , . . . , P

±
m .

The rank ofM does not exceedm−3. The dimension of V (p) is equal to dimC kerM=m−rankM ≥ 3.
Lemma 2 is proven.

Lemma 3. For almost all points p1, . . . , pm ∈ R such that p1 + p2 + p3 = 0 the matrix

M4,...,m =

⎛
⎜⎜⎜⎜⎝

P ′(p4)
4P (p4)

1
p4−p5 . . . 1

p4−pm

1
p5−p4

P ′(p5)
4P (p5) . . . 1

p5−pm

...
...

. . .
...

1
pm−p4

1
pm−p5 . . . P ′(pm)

4P (pm)

⎞
⎟⎟⎟⎟⎠

is nondegenerate.

Proof. Let t ∈ R, ε = O(t), and

(p1, . . . , pm) =
{ (−1, 0, 1, 2, 2 + t, 3, . . . , m−1

2 + t
)

for odd m,(−1, 0, 1, 2, 2 + t, 3, . . . , m2 , 1 + t
)

for even m.
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Then for the determinant we have the estimate

t detM4,...,m =

∣∣∣∣∣∣∣∣∣∣

ε −1 . . . ε ε
1 ε . . . ε ε
...

...
. . .

...
ε ε . . . ε −1
ε ε . . . 1 ε

∣∣∣∣∣∣∣∣∣∣
= 1 +O(ε)

in the case of an odd m and the estimate

t detM4,...,m =

∣∣∣∣∣∣∣∣∣∣∣∣

ε −1 . . . ε ε ε
1 ε . . . ε ε ε
...

...
. . .

...
...

...
ε ε . . . ε −1 ε
ε ε . . . 1 ε ε
ε ε . . . ε ε 11

24

∣∣∣∣∣∣∣∣∣∣∣∣
=

11
24

+O(ε)

in the case of an even m as t→ 0. Consequently, the determinant M4,...,m is a nonzero rational function
of p1, . . . , pm. Since the zero set of a rational function has measure zero, the determinant detM4,...,m is
different from zero for almost all p1, . . . , pm ∈ R. Lemma 3 is proven.

Proof of Proposition 1.
1. Take arbitrary ψ1, ψ2 ∈ V (p). Then ψ1 − ψ2 and ψ1 + ψ2 belong to V (p). By Lemma 1, for the

residues at the points P0, . . . , P3, P
±
4 , . . . , P

±
m we have

res(ψ1 + ψ2)2
dz

w
= 0, res(ψ1 − ψ2)2

dz

w
= 0,

res
ψ1ψ2dz

w
=

1
4

res
(
(ψ1 + ψ2)2 − (ψ1 − ψ2)2

) dz
w

= 0.

2. By Lemma 2, for almost all points p1, . . . , pm ∈ R such that p1 + p2 + p3 = 0 the rank of M is
equal to m− 3. Consequently, the dimension of V (p) is equal to dimC kerM = m− rankM = 3.

The proposition is proven.
Proof of Proposition 2. Henceforth we assume that p1 + p2 + p3 = 0.
Represent Γ by gluing two copies of the planes C (“lower” and “upper” sheets) with cuts along the

intervals [p1, p2] and [p3,∞]. In this representation to the points (w, z) and (−w, z) in Γ there correspond
the points z on the “lower” and “upper” sheets of the Riemann surface. Let

γ1 = {(z, w) ∈ Γ | z ∈ [p1, p2]}, γ2 = {(z, w) ∈ Γ | z ∈ [p2, p3]}.
These cycles γ1 and γ2 are homotopically equivalent to nontrivial cycles of a torus demonstrated in Fig. 1.

p1 p2 p3 ∞
∼ γ1

∼ γ2

Fig. 1

The doted line stands for the part of the cycle lying on the “lower” sheet of the Riemann surface
and the solid line stands for the part of the cycle on the “upper” sheet. The cycles γ1 and γ2 constitute
a basis for H1(Γ; Z2).

Define the sequence δi =
{

1 for i = 1, 2, 3,
1/2 for i ≥ 4.
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Lemma 4. The following equalities are valid for ψ1, ψ2 ∈ V (p):

∫
γk

ψ1ψ2

w
dz = −8

( m∑
j=1

m∑
i=1

αiβj +
m∑
i=1

δiαiβi

)
ηk

+8
( m∑
i=1

m∑
j=1

αiβj
(
pi + pj

)− m∑
i=1

δiαiβipi

)
ωk, k = 1, 2,

where

ηk = −1
2

∫
γk

zdz

w
, ωk =

1
2

∫
γk

dz

w
, k = 1, 2.

Proof. Consider the torus T = C/{2ω1Z+2ω2Z} with a local parameter u. On T there is a unique
meromorphic function with second-order pole at 0 having the following expansion about zero:

℘(u) =
1
u2

+ o(u) + . . . .

The function ℘(u) is called the Weierstrass ℘ function [9].
For p1 + p2 + p3 = 0 the mapping ρ(u) : T → Γ given by the formula ρ(u) = (℘(u), ℘′(u)) is

biholomorphic [9]. Therefore, the equality

(℘′(u))2 = 4(℘(u) − p1)(℘(u) − p2)(℘(u) − p3) (13)

is valid and ρ maps the points 0, ω1, ω2, and ω3 = ω1 + ω2 onto P0, . . . , P3 in some order.
The cycles 2ω1t and 2ω2t, t ∈ [0, 1], constitute a basis for H1(T; Z). Thereby the images ρ(2ω1t) and

ρ(2ω2t) of these cycles are homotopically equivalent to γ1 and γ2 respectively [9].
Choose u1, . . . , um such that

ρ(ui) = (pi, wi), i = 1, . . . ,m.

It follows from (13) then that ρ(−ui) = (pi,−wi), i = 4, . . . ,m. Assume that w1 = w2 = w3 = 0.
By Proposition 1, the differential ψ1ψ2dz/w has only second-order poles without residues; therefore,

ψ1ψ2dz/w is a linear combination of the differentials du, ℘(u)du, ℘(u− u1)du, . . . , ℘(u− um)du, ℘(u+
u4)du, . . . , ℘(u+ um)du.

Find this linear combination. Note that the equality ρ∗(dz/w) = du is valid. Let

α0 = res
Q

ψ1

w
dz, β0 = res

Q

ψ2

w
dz

at a point Q ∈ {P0, . . . , P3, P
±
4 , . . . , P

±
m

}
. Take u0 ∈ T such that ρ(u0) = Q. Then, by Proposition 1,

ρ∗
ψ1ψ2

w
dz =

α0β0

(u− u0)2
du+O(1) du.

The form of ψ1 implies that for the residues of ψ1dz/w we have

res
P0

ψ1

w
dz = −2

m∑
i=1

αi, res
P1

ψ1

w
dz = 2α1, . . . , res

P3

ψ1

w
dz = 2α3,

res
P±

4

ψ1

w
dz = α4, . . . , res

P±
m

ψ1

w
dz = αm.

The residues of ψ2dz/w are calculated similarly.
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Thus, the sought linear combination ρ∗ ψ1ψ2

w dz is equal to

(
4

m∑
i=1

m∑
j=1

αiβj℘(u) + 4
3∑
i=1

αiβi℘(u− ui) +
m∑
i=4

αiβi(℘(u− ui) + ℘(u+ ui)) + c0

)
du.

Define the constant c0 from the behavior of the 1-forms near ρ(0) = ∞.
The so-found linear combination for ρ∗ ψ1ψ2

w dz has the following expansion about zero:

4
m∑
i=1

m∑
j=1

αiβj
du

u2
+

(
4

m∑
i=1

δiαiβi℘(ui) + c0

)
du+O(u) du. (14)

Choose the local parameter q = 1√
z
. Then in a neighborhood of ∞ we have

(z, w) =
(

1
q2
,

2
q3

√
(1 − p1q2)(1 − p2q2)(1 − p3q2)

)

and
du =

dz

w
= −(1 +O(q)) dq.

To write down the Laurent series of the differential ψ1ψ2dz/w at the point ∞, we use the asymptotic
expansion

m∑
i=1

αiw

z − pi
= q2

m∑
i=1

αi(1 + piq
2 +O(q4))

and
qw dq =

1
q2

√
(1 − p1q2)(1 − p2q2)(1 − p3q2) =

1
q2

(1 − (p1 + p2 + p3)q2 +O(q4)).

Since p1 + p2 + p3 = 0, the last expression is equal to 1
q2

+O(q2).
Write down the expansion of ψ1ψ2dz/w as follows:

m∑
i=1

αiw

z − pi

m∑
j=1

βjw

z − pj

dz

w
= −4

m∑
i=1

αi
1 − piq2

m∑
j=1

βj
1 − pjq2

qwdq

= −4

(
m∑

i,j=1

αiβj
1
q2

+
m∑
i=1

αi(1 + piq
2 +O(q4))

m∑
j=1

βj(1 + pjq
2 +O(q4))

)
dq

+O(q) dq = −4
m∑

i,j=1

αiβj
dq

q2
− 4

m∑
i,j=1

αiβj(pi + pj)dq +O(q)dq. (15)

Equating the expansions (14) and (15) of the differential ψ1ψ2dz/w, we find c0:

c0 = 4
m∑
i=1

m∑
j=1

αiβj(pi + pj) − 4
m∑
i=1

δiαiβipi.

From the relations ∫
γk

℘(u− ui) du =
∫
γk

℘(u) du =
∫
γk

zdz

w
= −2ηk,

∫
γk

du = 2ωk,

for i = 1, . . . ,m and k = 1, 2, we obtain the assertion of the lemma.
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Continue the proof of Proposition 2. It follows from Lemma 4 that A is independent of the choice
of p1, . . . , pm. We denote the quadratic form corresponding to the symmetric bilinear forms A and B(p)
by A and B(p). Write down these matrices:

A =

⎛
⎜⎜⎝

1 + δ1 1 . . . 1
1 1 + δ2 . . . 1
...

...
. . .

...
1 1 . . . 1 + δm

⎞
⎟⎟⎠ , B(p) =

⎛
⎜⎜⎝

(2 − δ1)p1 p2 + p1 . . . pm + p1

p1 + p2 (2 − δ2)p2 . . . pm + p2
...

...
. . .

...
p1 + pm p2 + pm . . . (2 − δm)pm

⎞
⎟⎟⎠ .

Recall that the corner minor of order k of a matrix is the determinant of the submatrix constituted
by k upper rows and k left columns of the matrix.

Let m ≥ 3 be an arbitrary number. The corner minors of orders k = 1, 2, 3 of the matrix A are equal
to 2, 3, 4 respectively; i.e., they are positive. For each k ≥ 4 the corner minor is equal to 24−k(k−1) > 0.
This can be demonstrated by elementary transformations of the matrix. Starting with the bottom row,
from each row we subtract the previous. We stop with terminate this process at the second row:

⎛
⎜⎜⎝

1 + δ1 1 . . . 1
1 1 + δ2 . . . 1
...

...
. . .

...
1 1 . . . 1 + δk

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ1 1 . . . 1 1 1
−δ1 δ2 . . . 0 0 0

0 −δ2 . . . . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . −δk−2 δk−1 0
0 0 . . . 0 −δk−1 δk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

We now start a new series of transformations with the last but one column: to each column we add the
previous. We stop with terminate the transformation of the matrix at the fourth column:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ1 1 1 k − 3 k − 2 . . . 3 2 1
−δ1 δ2 0 0 0 . . . 0 0 0
0 −δ2 δ3 0 0 . . . 0 0 0

0 0 −δ3 δ4 0
. . . 0 0 0

0 0 0 0 δ5
. . . 0 0 0

...
...

...
...

. . . . . .
...

...
0 0 0 0 0 . . . δk−2 0 0
0 0 0 0 0 . . . 0 δk−1 0
0 0 0 0 0 . . . 0 0 δk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, it suffices to add the doubled fourth column to the third column to make the submatrix split.
The cofactor of the corner minor of order 3 is diagonal and its determinant is equal to 1

2k−3 , while the
determinant of the corner minor of order 3 is equal to 2(k − 1). Consequently, the corner minor of
order k ≥ 4 is equal to 24−k(k − 1).

In view of Sylvester’s criterion, from positivity of all corner minors A we find that the quadratic
form A is positive definite. The proposition is proven.

Write down the Gram–Schmidt matrix in the basis ξ1, ξ2, ξ3:

(A(ξi, ξj))3×3 = (δij), (16)

(B(ξi, ξj))3×3 = (μiδij), (17)

where μ1, μ2, μ3 ∈ R. For each p = (p1, . . . , pm) the numbers μ1, μ2, and μ3 are defined to within
rearrangement.
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Proposition 4. There is a one-parameter family Γ(pt) of tori such that the periods∫
γ

ξ21
dz

w
,

∫
γ

ξ22
dz

w
,

∫
γ

ξ23
dz

w

are pairwise distinct for γ = γ1, γ2.

Proof. Let

(p1, . . . , pm) =
{ (−1, 0, 1, 2, 2 + t, 3, . . . , m−1

2 + t
)

for odd m,(−1, 0, 1, 2, 2 + t, 3, . . . , m2 , 1 + t
)

for even m,

where t ∈ [0, 1).
Let

ζk(t) =
3∑
i=1

δik
z − pi

+
m∑
j=4

ζik(t)
z − pj(t)

, k = 1, 2, 3,

where δnk is the Kronecker symbol and

(
ζ4
k(t)
. . .
ζmk (t)

)
= −M−1

4,...,m(t)

⎛
⎝ 1

p4(t)−pk

. . .
1

pm(t)−pk

⎞
⎠ .

Since

M

⎛
⎜⎜⎜⎜⎜⎝

δ1k
δ2k
δ3k
ζ4
k(t)
. . .
ζmk (t)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎝ 1

p4(t)−pk

. . .
1

pm(t)−pk

⎞
⎠+M4,...,m(t)

(
ζ4
k(t)
. . .
ζmk (t)

)
,

the family of the functions ζ1(t), ζ2(t), and ζ3(t) is a basis for V (pt).
Put

ζk(0) =

{ 1
z−pk

for odd m,
1

z−pk
+ 4δ3k

z−pm
for even m,

k = 1, 2, 3.

Lemma 5. There is a sufficiently small T > 0 such that the functions ζik(t) : [0, T ) → R, k = 1, 2, 3,
i = 4, . . . ,m, are defined and continuous.

Proof. Since
P ′(z)
P (z)

=
1

z − p1
+

1
z − p2

+
1

z − p3

and

pi − pj =
{
O(t) for {i, j} = {2k, 2k + 1} and some k ≥ 2,
O(1) otherwise,

we have

tM4,...,m(t) =

⎛
⎜⎜⎜⎜⎝

P ′(p4)
4P (p4)

1
p4−p5 . . . 1

p4−pm

1
p5−p4

P ′(p5)
4P (p5) . . . 1

p5−pm

...
...

. . .
...

1
pm−p4

1
pm−p5 . . . P ′(pm)

4P (pm)

⎞
⎟⎟⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎝
ε −1 . . . ε ε
1 ε ε ε
...

...
. . .

...
ε ε ε −1
ε ε . . . 1 ε

⎞
⎟⎟⎟⎟⎠
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for odd m and

tM4,...,m(t) ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

ε −1 . . . ε ε ε
1 ε ε ε ε
...

...
. . .

...
ε ε ε −1 ε
ε ε 1 ε ε
ε ε . . . ε ε 1

4 + ε

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

for even m, where ε = O(t).
Now, it is obvious that, for a sufficiently small T , the quantity |det tM4,...,m(t)| is greater than

c1 = 1/8 for all t ∈ (0, T ), and the absolute values of the entries of the matrix tM4,...,m(t) are less or
equal to c2 = 1. Since the entries of the inverse matrix are equal to the ratio of the cofactor and the
determinant of the matrix, the inverse matrices (tM4,...,m(t))−1 exist and the absolute values of the entries
of (tM4,...,m(t))−1 are less than (m− 1)!cm−1

2 /c1 = 8(m− 1)! for t ∈ (0, T ).
Continuity of ζi1(t), ζ

i
2(t), ζ

i
3(t), i = 4, . . . ,m, on (0, T ) is obvious. Show the right continuity at zero.

For an odd m the vectors⎛
⎜⎜⎜⎜⎝

1
p4(t)−p1

1
p5(t)−p1
. . .
1

pm−1(t)−p1
1

pm(t)−p1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
3
1

3+t
. . .
2

m+1
2

m+1+2t

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1
p4(t)−p2

1
p5(t)−p2
. . .
1

pm−1(t)−p2
1

pm(t)−p2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2
1

2+t
. . .
2

m−1
2

m−1+2t

⎞
⎟⎟⎟⎟⎠ , (19)

⎛
⎜⎜⎜⎜⎝

1
p4(t)−p3

1
p5(t)−p3
. . .
1

pm−1(t)−p3
1

pm(t)−p3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
1

1+t
. . .
2

m−3
2

m−3+2t

⎞
⎟⎟⎟⎟⎠

are bounded. Consequently, in this case the limit limt→+0 t(tM4,...,m(t))−1 is equal to the zero matrix
and the following equalities are valid:

lim
t→+0

ζ1(t) = ζ1(0), lim
t→+0

ζ2(t) = ζ2(0), lim
t→+0

ζ3(t) = ζ3(0).

For even m, all coordinates but 1
pm(t)−p3 of (19) are bounded. Consequently,

lim
t→+0

ζ1(t) = ζ1(0), lim
t→+0

ζ2(t) = ζ2(0).

To find the limit limt→+0 ζ3(t), we eliminate the indeterminacy 0 · ∞ as follows:

− lim
t→+0

t(tM4,...,m(t))−1

⎛
⎜⎜⎜⎜⎝

1
p4(t)−p3

1
p5(t)−p3
. . .
1

pm−1(t)−p3
1

pm(t)−p3

⎞
⎟⎟⎟⎟⎠ = − lim

t→+0
t
(
tM4,...,m(t)

)−1

⎛
⎜⎜⎜⎝

1
1

1+t
. . .
2

m−4

1/t

⎞
⎟⎟⎟⎠

= − lim
t→+0

(tM4,...,m(t))−1

⎛
⎜⎝

0
. . .
0
1

⎞
⎟⎠ .
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Denote limt→+0(tM4,...,m(t))−1 by

1
det tM4,...,m(t)

⎛
⎜⎝

. . . . . . . . . C1

. . . . . . . . . . . .

. . . . . . . . . Cm−4

. . . . . . . . . Cm−3

⎞
⎟⎠ ,

where Cj are the cofactors. Since all entries of the last row of the submatrix

Cj = (−1)j+m−3 · det

⎛
⎜⎜⎜⎜⎜⎜⎝

ε −1 . . . ε ε
1 ε . . . ε ε
...

...
. . .

...
...

ε ε . . . ε −1
ε ε . . . 1 ε
ε ε . . . ε ε

⎞
⎟⎟⎟⎟⎟⎟⎠

are equivalent to ε for 1 ≤ j ≤ m− 4, we have detCj = ε as t→ 0.
The cofactor Cm is equivalent to

Cm = (−1)m−3+m−3 · det

⎛
⎜⎜⎜⎜⎝
ε −1 . . . ε ε
1 ε . . . ε ε
...

...
. . .

...
...

ε ε . . . ε −1
ε ε . . . 1 ε

⎞
⎟⎟⎟⎟⎠ = 1 + ε as t→ 0.

It follows from (18) that det tM4,...,m(t) = 1
4 + ε as t→ 0.

Thus,

lim
t→+0

(
tM4,...,m(t)

)−1 =

⎛
⎜⎝

. . . . . . . . . 0

. . . . . . . . . . . .

. . . . . . . . . 0

. . . . . . . . . 4

⎞
⎟⎠ ,

and ζ3(0) = limt→+0 ζ3(t). The lemma is proven.
Define V (pt) at t = 0 to be the linear span of ζ1(0), ζ2(0), and ζ3(0).
The following assertion is now obvious:

Lemma 6. The functions A(ζi(t), ζj(t)) and B(pt; ζi(t), ζj(t)) are continuous for t ∈ [0, 1) and i, j ∈
{1, 2, 3}.

Continue the proof of Proposition 4. Given an odd m, put

ξ1 =
1
2
(−ζ1(0) + ζ2(0) + ζ3(0)),

ξ2 =
1
2
(ζ1(0) − ζ2(0) + ζ3(0)), ξ3 =

1
2
(ζ1(0) + ζ2(0) − ζ3(0)).

It is easy to verify that the following equalities are valid:

(aij) = (A(ξi, ξj)) =

( 1 0 0
0 1 0
0 0 1

)
, (bij) = (B(p0; ξi, ξj)) =

( 1 0 0
0 0 0
0 0 −1

)
.

Consequently, we obtain μ1 = 1, μ2 = 0, and μ3 = −1 on Γ0.
Assume that for even m we have

ξ1 = −
√

39
78

(5ζ1(0) + 5ζ2(0) − 3ζ3(0)), ξ2 = −
√

6
6

(ζ1(0) − 2ζ2(0)), ξ3 =
√

2
2
ζ1(0).
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Then (aij) is the identity matrix and (bij) has the characteristic polynomial 13μ3 − 12μ2 − 21μ+ 4. The
zeros of this polynomial are μ1, μ2, and μ3. It is easy to verify that μ1, μ2, and μ3 are pairwise distinct.

Thus, for every m, there is a torus Γ0 such that the numbers μ1, μ2, and μ3 are pairwise distinct.
By Lemma 6, the entries of the Gram–Schmidt matrix (17) are continuous on [0, T ). Therefore, the
numbers μ1, μ2, and μ3 depend continuously on t in [0, T ) as the roots of the characteristic polynomial
of the Gram–Schmidt matrix. Thereby there is T ′ such that the numbers μ1, μ2, and μ3 are pairwise
distinct for t ∈ [0, T ′). Proposition 4 is proven.

Let
ak =

∫
γ1

ξ2k
dz

w
, bk =

∫
γ2

ξ2k
dz

w
, k = 1, 2, 3. (20)

The equalities

ak =
∫
γ1

ξ2k
dz

w
= −8η1A(ξk, ξk) + 8ω1B(ξk, ξk) = −8η1 + 8ω1μk, k = 1, 2, 3,

bk =
∫
γ2

ξ2k
dz

w
= −8η2A(ξk, ξk) + 8ω2B(ξk, ξk) = −8η2 + 8ω2μk, k = 1, 2, 3,

follow from (5), (16), and (17). Therefore,(
a1 a2 a3

b1 b2 b3

)
= 8

(−η1 ω1

−η2 ω2

)(
1 1 1
μ1 μ2 μ3

)
.

It is difficult to estimate the periods a1, a2, a3, b1, b2, and b3 and even more difficult to calculate
them. In the following lemma we give some conditions on these periods:

Lemma 7. Suppose that a torus Γ is such that μ1, μ2, and μ3 are distinct. Then
(1) the periods a1, a2, and a3 are reals and the periods b1, b2, and b3 are imaginary;
(2) the periods ξ2kdz/w along different cycles do not vanish simultaneously:

|ak| + |bk| �= 0, k = 1, 2, 3;

(3) there is at most one pair (if any) of noncoinciding indices k, l ∈ {1, 2, 3} such that

akbl + albk = 0;

(4) there is at most one pair (if any) of noncoinciding indices k, l ∈ {1, 2, 3} such that

akbl − albk = 0;

(5) there is at most one index k ∈ {1, 2, 3} (if any) such that

ak = 0;

this assertion is also valid for bk = 0;
(6) for different k, l ∈ {1, 2, 3} we have

|akbl − albk| + |akbl + albk| �= 0.

Proof. 1. Consider the involution τ : (z, w) 	→ (z̄, w). The following equality is valid for the 1-forms
ϕ = dz/w and zdz/w:

τ∗ϕ = ϕ.
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Then we have the equalities ∫
γ1

ϕ =
∫
τγ1

ϕ =
∫

ττγ1

τ∗ϕ =
∫
γ1

ϕ.

The first equality follows from γ1 = τγ1. The second equality is valid for arbitrary involutions. The third
is obtained from τ∗ϕ = ϕ.

Similarly, using γ2 = −τγ2, we obtain the equality∫
γ2

ϕ =
∫

−τγ2
ϕ =

∫
−ττγ2

τ∗ϕ = −
∫
γ2

ϕ.

Hence, the periods ω1 and η1 are real, while ω2 and η2 are purely imaginary. The periods ak and bk
are linear combinations with real coefficients of ω1, η1 and ω2, η2 respectively. Thus, the first assertion
of the lemma is valid.

2. Since ak = −η1 + μkω1 and bk = −η2 + μkω2 by definition, we have(
ak
bk

)
=
(−η1 + μkω1

−η2 + μkω2

)
=
(−η1 ω1

−η2 ω2

)(
1
μk

)
. (21)

Denote the square matrix in the last expression by Δ. It follows from the Legendre equality η1ω2−η2ω1 =
πi
2 which is valid on every torus [9] that det Δ = −η1ω2 + η2ω1 �= 0. By the linear independence of the
columns of Δ, the vector ( ak bk ) cannot be zero. Consequently, the second assertion of the lemma
is valid.

3. From (21) we obtain the equality

albk + akbl = ( al bl )
(
bk
ak

)
= ( 1 μl ) Δt

(
0 1
1 0

)
Δ
(

1
μk

)
,

where k, l ∈ {1, 2, 3}; therefore,(
akbl + albk
akbj + ajbk

)
=
(

1 μl
1 μj

)
Δt

(
0 1
1 0

)
Δ
(

1
μk

)
.

Since μl �= μj and det Δ �= 0, the columns of the product(
1 μl
1 μj

)
Δt

(
0 1
1 0

)
Δ

are linearly independent and the vector ( akbl + albk akbj + ajbk ) is nonzero.
We have thus validated the third assertion.
4. The fourth assertion is proven by analogy with the third and follows from the fact that

det
[(

1 μl
1 μj

)
Δt

(
0 −1
1 0

)
Δ
]
�= 0.

5. To prove the fifth assertion, consider ak and al with different indices k, l ∈ {1, 2, 3}. The period ω1

is different from 0.
From the equality (

ak
al

)
=
(−η1 + μkω1

−η1 + μlω1

)
=
(

1 μk
1 μl

)(−η1

ω1

)
and μk �= μl we obtain the fifth assertion.

Note that the fifth assertion is also valid for bk, k = 1, 2, 3.
6. The sixth assertion follows from the second and fifth.
The lemma is proven.
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Proof of Proposition 3. Henceforth we assume that μ1, μ2, and μ3 are distinct. In Proposition 4
we demonstrated existence of such a torus.

By Lemma 7, renumbering ξ1, ξ2, and ξ3 we can guarantee that a3 �= 0 and a1b3+a3b1 �= 0; therefore,
henceforth we assume that a3 �= 0 and a1b3 + a3b1 �= 0.

The period problem

Re
∫
γ

ψ1ψ2
dz

w
= 0,

∫
γ

ψ2
1

dz

w
−
∫
γ

ψ2
2

dz

w
= 0, γ = γ1, γ2,

consists of two real and two complex equations.
Insert ψ1 and ψ2 into the first part of the condition:∫

γ

ψ1ψ2
dz

w
=
∫
γ

(
vxξ21 + yξ22 + (vy + x)ξ1ξ2 + vuξ1ξ3 + uξ2ξ3

)dz
w

=
∫
γ

(
vxξ21 + yξ22

)dz
w

=
{
vxa1 + ya2 for γ = γ1,

vxb1 + yb2 for γ = γ2.

The second equality follows from Lemma 1. The last equality is valid by (20). By the first assertion of
Lemma 7, the periods

vxa1 + ya2 = −(a1b2 − a2b1)s ∈ iR, vxb1 + yb2 = (a1b2 − a2b1)r ∈ iR

are purely imaginary; therefore, the first part of the period problem is satisfied.
The second part of the condition is simplified by analogy with the first:∫

γ

ψ2
1

dz

w
−
∫
γ

ψ2
2

dz

w
=
∫
γ

(
v2ξ21 + ξ22

)dz
w

−
∫
γ

(
x2ξ21 + y2ξ22 + u2ξ23

)dz
w

=
{
v2a1 + a2 − x2a1 − y2a2 − u2a3 for γ = γ1,

v2b1 + b2 − x2b1 − y2b2 − u2b3 for γ = γ2.

Note that, by the first assertion of Lemma 7, the periods a1, a2, and a3 are real. The choice of u in the
form (7) guarantees that the periods vanish along the cycle γ1. Show that the choice of v in the form (6)
implies that the periods along γ2 are zero.

From the form of v(r, s) we conclude that v is a root of the polynomial cv4+(|c|2+2i Im d)v2+ c̄d = 0.
Denote |c|2 + 2i Im d by α. The discriminant of this polynomial is real:

α2 − 4|c|2d = |c|4 + 4|c|2i Im d− 4 Im2 d− 4|c|2d = |c|4 − 4|c|2 Re d− 4 Im2 d ∈ R.

Show that it is positive for (r, s) in some domain Ω ⊂ R
2. Note that d(r, s), c(r, s), and the discrim-

inant depend continuously on (r, s) on R
2. Consequently, it suffices to indicate the points in R

2 at which
the discriminant is positive.

If a2b3 + a3b2 �= 0 then the discriminant is positive for (r, s) = (0, 0):∣∣∣∣a2b3 + a3b2
a1b3 + a3b1

∣∣∣∣
2

> 0.

If a2b3 + a3b2 = 0 then at s = 0 the discriminant equals

a4
1r

6

∣∣∣∣a2b3 − a3b2
a1b3 + a3b1

∣∣∣∣
2(
a4

1

(
a2b3 − a3b2
a1b3 + a3b1

)2

r2 + 4a2
2

a1b3 − a3b1
a1b3 + a3b1

)

and is nonnegative for a sufficiently large r. Consequently, there is a domain Ω ⊂ R
2 where the discrim-

inant is nonnegative.
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Now, insert the values of u, x, and y into the expression v2b1 + b2−x2b1−y2b2−u2b3 for the period,
multiply by a3v

2, and divide by −(a1b3 + a3b1). Let a3v
2 �= 0. Obvious calculations demonstrate that

the period v2b1 + b2 − x2b1 − y2b2 − u2b3 is zero if and only if v̄2v2 + cv2 + d = 0.
Insert (6) into v̄2v2 + cv2 + d. Given (r, s) ∈ Ω, find

v̄2v2 + cv2 + d =
1

4|c|2 (α±
√
α2 − 4|c|2d)(α±

√
α2 − 4|c|2d)α2

−1
2
(α±

√
α2 − 4|c|2d) + d =

1
4|c|2 (|c|2 ±

√
α2 − 4|c|2d− 2i Im d)

×(|c|2 ±
√
α2 − 4|c|2d+ 2i Im d)α2 − 1

2
(α±

√
α2 − 4|c|2d) + d

=
1

4|c|2 (|c|4 ± 2|c|2
√
α2 − 4|c|2d+ α2 − 4|c|2d+ 4 Im2 d)

−1
2
(α±

√
α2 − 4|c|2d) + d =

|c|2
4

±
√
α2 − 4|c|2d

2

+
α2 + 4 Im2 d

4|c|2 − d− |c|2
2

− i Im d− ±√α2 − 4|c|2d
2

+ d = 0.

Thus, for (r, s) ∈ Ω the periods (3) along γ1 and γ2 are zero.

Correctness of the construction.

Lemma 8. The zero sets of c(r, s) and v(r, s) have measure zero in R
2.

Proof. It follows from the second assertion of Lemma 7 that the polynomial (a1r+b1s)2 is nonzero.
By the sixth assertion of Lemma 7, the function c(r, s) is not identically zero. Hence, the zero set of c(r, s)
has measure zero.

The roots of the polynomial cv4 + (|c|2 + 2i Im d)v2 + c̄d are zero if and only if |c|2 + 2i Im d = 0 and
c̄d = 0. Consequently, a necessary condition for v(r, s) = 0 is c(r, s) = 0. The lemma is proven.

Thus, the expression which defines ψ1 and ψ2 contains no division by zero for almost all (r, s) ∈ Ω.

Proposition 5. There exist (r, s) ∈ Ω such that ψ1 and ψ2 have poles at each of the points
P0, . . . , P3, P

±
4 , . . . , P

±
m .

Denote the submatrices composed of the columns j1, . . . , jm of the matrix M by Mj1,...,jm .

Lemma 9. For almost all points p1, . . . , pm ∈ R such that p1 + p2 + p3 = 0 all square submatrices
Mj1,...,jm are nondegenerate.

Proof. Interchanging the variables pi and pj for 3 ≤ i, j ≤ m (1 ≤ i, j ≤ 3) results in interchanging
the ith and jth columns and the (i − 3)th and (j − 3)th rows of M . Therefore, it suffices to prove
nondegeneracy of M4,...,m, M1,4,...,m−2, M1,2,4,...,m−1, and M1,...,m−3.

Nondegeneracy of M4,...,m is proven in Lemma 2.
Let N be a sufficiently large natural number. Put

p = (p1, . . . , pm) = (−1, 0, 1, N,N + 1, 2N, 2N + 1, . . . ).

The submatrices M1,4,...,m−1, M1,2,4,...,m−2, and M1,...,m−3 have the form(
R S
T U

)
,

where S stands for M4,...,m−1, M4,...,m−2, or M4,...,m−3. By Lemma 2, the submatrix S is nondegenerate
in each case. The entries of R have the asymptotic behavior ε = O(1/N) as N → ∞. The entries of U
are bounded by a constant independent of N .
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The submatrix T has one of the following forms:

( 1
pm−p1 ) ,

( 1
pm−1−p1

1
pm−1−p2

1
pm−p1

1
pm−p2

)
or

⎛
⎝

1
pm−2−p1

1
pm−2−p2

1
pm−2−p3

1
pm−1−p1

1
pm−1−p2

1
pm−1−p3

1
pm−p1

1
pm−p2

1
pm−p3

⎞
⎠ .

Choose the numbers pm−2, pm−1, pm ∈ (0, 1) (only those entering T ) so that the determinant T be
nonzero. Then the matrix (

R S
T U

)
→
(
ε S
T ∗

)
splits into two matrices with nondegenerate determinants as N → ∞.

Estimate M1,4,...,m−1, M1,2,4,...,m−2, and M1,...,m−3 to find:

det
(
ε S
T ∗

)
= detS detT +O(1/N).

The lemma is proven.

Prove the following consequence of Lemma 9:

Lemma 10. For almost all p = (p1, . . . , pm) such that p1 + p2 + p3 = 0, and for each of the points
P0, . . . , P3, P

±
4 , . . . , P

±
m , there is a function ψ ∈ V (p) having a pole at this point.

Proof. By Lemma 2, the space

V (p) =
{ m∑
i=1

νiw

z − pi
| (ν1, . . . , νk, . . . , νm) ∈ kerM

}

is three-dimensional for almost all p = (p1, . . . , pm) such that p1 + p2 + p3 = 0.
Suppose the converse; i.e., suppose that the functions in V (p) have no pole at one of the points

(pk, wk) ∈
{
P1, P2, P3, P

±
4 , . . . , P

±
m

}
, k ∈ {1, . . . ,m}. Then

V (p) =
{ m∑
i=1

νiw

z − pi
| (ν1, . . . , νk−1, νk, νk+1, . . . , νm) ∈ kerM, νk = 0

}

=
{ m∑
i=1,i�=k

νiw

z − pi
| (ν1, . . . , νk−1, νk+1, . . . , νm) ∈ kerM ′

}
,

where M ′ is the matrix M with the kth column deleted.
By Lemma 9, the matrix M ′ has the maximal rank for almost all points p1, . . . , pm. Consequently,

dimC kerM ′ = m− 1− rankM ′ = 2, while dimC V (p) = dimC kerM = dimC kerM ′ = 3; a contradiction.
Now, we are left with validating the assertion for the point P0.
Suppose the converse. Assume that the functions in V (p) have no pole at P0:

V (p) =
{ m∑
i=1

νiw

z − pi
| (ν1, . . . , νm) ∈ kerM, ν1 + · · · + νm = 0

}

=
{ m∑
i=1

νiw

z − pi
| (ν1, . . . , νm) ∈ kerM ′′

}
,

where M ′′ is the matrix M augmented by a row of unities.
By analogy with the proof of Lemma 9, we can easily prove that the matrix M ′′ has the maximal

rank for almost all points p1, . . . , pm. Consequently, dimC kerM ′′ = m−rankM ′′ = 2, while dimC V (p) =
dimC kerM = dimC kerM ′′ = 3, a contradiction. The lemma is proven.
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Lemma 11. The function v(r, s) is nonconstant on Ω.

Proof. By Lemma 8, the polynomial c(r, s) is nonzero for almost all (r, s) ∈ R
2. For c(r, s) �= 0 the

function v is a root of the polynomial

v2 +
(|c|2 + 2i Im d)

c
v +

c̄d

c
= 0. (22)

Suppose the converse; i.e., suppose that the zeros of (22) are constant. This means that (|c|2 +
2i Im d)/c and c̄d/c are constant. It follows from here and the form of the functions c(r, s) and d(r, s)
that d(r, s) is zero and c(r, s) is constant.

Consequently, a1b3−a3b1 and a2b3−a3b2 vanish simultaneously which contradicts the fourth assertion
of Lemma 7. The lemma is proven.

Lemma 12. The zero set of u(r, s) has measure zero in R
2.

Proof. If s = 0 and r → ∞ then we obtain

v2(r, s) = −a2b3 − a3b2
a1b3 + a3b1

a2
1r

2 + o(r2), u2(r, s) =
a1b2 + a2b1
a1b3 + a3b1

a2
1r

2 + o(r2). (23)

If a1 �= 0 and a1b2 + a2b1 �= 0 then (23) implies that u(s, t) �= 0 for almost all (r, s) ∈ R
2. If a1 = 0 then

the assertion of the lemma is obvious.
If a1b2 + a2b1 = 0 then it is easy to validate the equalities

v2(0, 0) = −a2b3 + a3b2
a1b3 + a3b1

, u2(0, 0) = −a1

a3

a1b2 − a2b1
a1b3 + a3b1

.

By the sixth assertion of Lemma 7, from a1b2 + a2b1 = 0 we obtain a1b2 − a2b1 �= 0.
Thus, u(r, s) is a nonzero algebraic function. Hence the assertion of the lemma follows. The lemma

is proven.
Proof of Proposition 5. Assume that ψ1 has no pole at Q for all (r, s) ∈ Ω. Then ξ1 and ξ2 have

no pole at Q. This follows from the form of ψ1 and the fact that v(r, s) changes on Ω by Lemma 11.
Therefore, by Lemma 10, ξ3 has a pole at Q. Thereby, ψ2 = x(r, s)ξ1 +y(r, s)ξ2 +u(r, s)ξ3 has a pole

at Q for r and s such that u(r, s) �= 0; i.e., ψ2 has a pole for almost all (r, s) ∈ R
2.

Thus, at each of the points P0, . . . , P3, P
±
4 , . . . , P

±
m at least one of the functions ψ1 and ψ2 has a simple

pole. So, the surface (2) has exactly n = 2m− 2 ≥ 6 planar embedded ends. The proposition is proven.
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